

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-240320LITZQW-01H
APPROVED BY	
DATE	

□ Preliminary Specification

■ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Lawlite	Mantle

This Specification is subject to change without notice.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2022/08/03	-	New Release	Mantle

1. Features

LCD 2.4 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) for mobile-phone or handy electrical equipments.

(1) Construction: 2.4" a-Si color TFT-LCD, White LED Backlight and FPC.

(2) Main LCD : 2.1 Amorphous-TFT 2.4 inch display, transmissive, Normally Black

2.2 240(RGB) x 320 dots Matrix

2.3 Narrow-contact ledge technique.

2.4 262K: Red-6bit, Green-6bit, Blue-6bit (18-bit interface)

(3) Direct data display with display RAM

(4) Interface: MPU and RGB Interface. (Select by H/W Jumper).

Default: 80-16BIT Type II

	JP3(IM3	5)	JP2(IM2	2)	JP1(IM1	1)	JP0(IM0))	Remark
Interface mode	1-2(H)	2-3(L)	1-2(H)	2-3(L)	1-2(H)	2-3(L)	1-2(H)	2-3(L)	
80-8bit Parallel I/F	NC	0R	NC	0R	NC	0R	NC	0R	DB[7:0]
		0		0		0		0	
80-16bit Parallel I/F	NC	0R	NC	0R	NC	0R	0R	NC	DB[15:0]
		0	(0		0		1	
80-9bit Parallel I/F	NC	0R	NC	0R	0R	NC	NC	0R	DB[8:0]
		0		0		1		0	
80-18bit Parallel I/F	NC	0R	NC	0R	0R	NC	0R	NC	DB[17:0]
		0		0		1		1	
3-line 9bit serial I/F	NC	0R	0R	NC	NC	0R	0R	NC	SDA: in/out,
2 data lane serial I/F									WRX: in
		0		1		0		1	
4-line 8bit serial I/F	NC	0R	0R	NC	0R	NC	NC	0R	SDA: in/out
		0		1		1		0	
80-16bit Parallel I/F	0 R	NC	NC	0R	NC	0 R	NC	0 R	DB[17:10],DB[8:1]
I		1	(0		0		0	Default
80-8bit Parallel I/F II	0R	NC	NC	0R	NC	0R	0R	NC	DB[17:10]
		1	(0		0		1	
80-18bit Parallel I/F	0R	NC	NC	0R	0R	NC	NC	0R	DB[17:0]
		1	(0		1		0	
80-9bit Parallel I/F II	0R	NC	NC	0R	0R	NC	0R	NC	DB[17:9]
		1	(0		1		1	
3-line 9bit serial I/F II	0R	NC	0R	NC	NC	0R	0R	NC	SDA: in/ SDO: out
		1		1		0		1	
4-line 8bit serial I/F II	0R	NC	0R	NC	0R	NC	NC	0R	SDA: in/ SDO: out
		1		1		1		0	

2. Electrical specifications

2-1 Electrical characteristics of LCM

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage(Power)	V _{DD}	Ta=25 °C	2.4	2.75	3.3	V
IC power voltage(Logic)	V _{DDI}	Ta=25 °C	1.65	1.8	3.3	V
High-level input voltage	V _{IH}	Ta=25 °C	$0.7V_{DDI}$		V _{DDI}	V
Low-level input voltage	V _{IL}	Ta=25 °C	GND		0.3V _{DDI}	V
Consumption current of VDD	I _{DD}	VDD=3.3V	-	8	15	mA

2-2 LED back light specification

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit				
Forward voltage	V _f	I _f =T.B.D mA	-	T.B.D	-	V				
Forward current	l _f	I _f Ta=25 °C - T.B.D - mA								
Luminous color		·	Whit	е						
LED connection		T.B.D								
LED life time		40Khrs (E	stimated	data, Ta=	=25°∁)					

3. Optical Characteristics

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Front	θ_{f}			80				
Viewing	Back	θ_{b}			80		doa		
Angle	Left	θ_{l}	CR≦10		80		deg.	(1)(2)(3)	
	Right	θ_{r}			80				
Contrast	Ratio	CR	Θ=Φ=0°	640	800			(1)(3)	
Boononco	Timo	Tr			16	21	ms	(1)(4)	
Response	Time	T _f			19	24	ms	(1)(4)	
	\//bito	Wx		0.24	0.29	0.34			
	vvriite	Wy		0.29	0.34	0.39	-		
	Ded	Rx	0- – 0°	0.55	0.60	0.65			
Color	Red	Ry	Θ-Φ-0	0.28	0.33	0.38			
chromaticity	Green	Gx		0.30	0.35	0.40		(1)	
	Green	Gy		0.53	0.58	0.63			
				0.06	0.11	0.16			
Blue		Ву		0.03	0.08	0.13			
Lumina	nce	L	Θ=Φ=0°	250	320		cd/m ²	(1)(5)	
Luminance U	niformity	ΔL	Θ=Φ=0°		70		%	(1)(5)(6)	

Note 1: Ta=25°C. To be measured on the center area of panel after 10 minutes

operation.

Note 2: Definition of Viewing Angle

Note 3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 4: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white"(falling time) and from "white" to "black" (rising time) respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 5 : Luminance is measured at point 5 of the display.

Note 6 : Definition of Luminance Uniformity

 ΔL = [L(min.) of 9 points / L(max.) of 9 points] X 100%

4. Interface Specifications

Pin No.	Terminal					Functions					
1	ENABLE	A dat	A data ENABLE signal in RGB I/F mode.								
2	DOTCLK	Dot c	Dot clock signal in RGB I/F mode.								
3	HSYNC	Fram	ie syn	chron	izing s	signal in RGB I/F mode.					
4	VSYNC	Fram	ie syn	chron	izing s	signal in RGB I/F mode.					
5	/CS	- Con	nect t	o IC S	ST778	9V CSX					
		- Chip	selec enable	tion pi	IN						
		High	disab	le.							
6	WR/SCL	- Con	nect t	o IC S	ST778	9V DCX					
		- Dispi	lay da pin is	ta/con used	nmano to be	d selection pin in parallel i serial interface clock	interrace.				
		DCX	='1': d	isplay	data	or parameter.					
		DCX	='0': c	omma	and da	this sin at VDD or CND					
7	201	- II noi	nect t	, piea: o IC S	SE IIX	this pin at VDD or GND. 9V SDA					
1	301	- IM3:	High,	SPI ir	nterfac	ce input pin.					
		- IM3:	LOW	, SPI i	nterfa	ce input/output pin.	SCI signal				
		- Ine	t used	s latc	nea o se fix	this pin at VDD or GND.	SCL Signal.				
8	RS	- Con	nect t	o IC S	ST778	9V WRX					
		- Write	enat	ole in N	MCU p	barallel interface.	vrial interface				
		- Displ	nd Da	ata lar	nman ne in 2	data lane serial interface					
		- If not	used	, plea	se fix	this pin at VDD or GND.					
9	NC	NC									
10	/RD	- Con	nect t	o IC S	ST778	9V RDX					
		- If not	t used	, plea	se fix	this pin at VCC or GND.					
11	/RESET	Rese	t pin.	Settin	g eith	er pin low initializes the L	SI.				
10		Must	be re	set the	e chop	o after power being suppli	ed.				
12	PD0	-									
13	PD1	-									
14	PD2	IM3	IM2	IM1	IM0	MPU Interface Mode	Data pin				
15	PD3	0	0	0	0	80-8bit parallel I/F	DB[7:0]				
10	PD4	0	0	0	1	80-16bit parallel I/F	DB[15:0]				
17	PD5	0	0	1	0	80-9bit parallel I/F	DB[8:0]				
18	PD6	0	0	1	1	80-18bit parallel I/F	DB[17:0],				
19	PD7	0	1	0	1	3-line 9bit serial I/F	SDA: in/out				
20	PD8	0	1	1	0	4-line 8bit serial I/F	SDA: in/out				
21	PD9	1	0	0	0	80-16bit parallel I/F Ⅱ	DB[17:10], DB[8:1]				
22	PD10	1	0	0	1	80-8bit parallel I/F Ⅱ	DB[17:10]				
23	PD11	1	0	1	0	80-18bit parallel I/F Ⅱ	DB[17:0],				
24	PD12	1	0	1	1	80-9bit parallel I/F Ⅱ	DB[17:9]				
25	PD13	1	1	0	1	3-line 9bit serial I/F П	SDA:in/ SDO: out				
26	PD14	1	1	1	0	4-line 8bit serial I/F Ⅱ	SDA:in/ SDO: out				
27	PD15	-									
28	PD16	-									
29	PD17										

Date : 2022/08/03

30	VDD	Power supply for the internal logic circuit. (VDD=2.4~3.3V)
31	VCI	
32	VCI	Power supply for interface I/O. (VDDI=1.65~3.3V)
33	NC	
34	NC	
35	NC	
36	NC	NC
37	NC	
38	NC	
39	NC	
40	GND	GND-terminal
41	NC	
42	NC	NC
43	NC	
44	NC	
45	GND	GND-terminal
46	GND	GND-terminal
47	NC	
48	NC	NC
49	NC	
50	GND	
51	GND	

5. Function Description

5.1 8080-II Series MCU Parallel Interface

The MCU uses one of following interface: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface, 19-lines with 16-data parallel interface, or 21-lines with 18-data parallel interface. The chip-select CSX(active low) enables and disables the parallel interface. RESX (active low) is an external reset signal. The R/WX is the Read/Write flag and D[17:0] is parallel data bus.

The LCD driver reads the data at the rising edge of WRX signal. The D/CX is the data/command flag. When D/CX='1', D[17:0] bits is either display data or command parameter. When D/C='0', D[17:0] bits is command.

The 8080- Π series bi-directional interface can be used for communication between the micro controller and LCD driver. Interface bus width can be selected with IM3, IM2, IM1 and IM0. The interface functions of 8080- Π series parallel interface are given in Table 12 The function of 8080- Π series parallel interface.

IM3	IM2	IM1	IM0	Interface	D/CX	RDX	WRX	Function															
					0	1	1	Write 8-bit command (D[8:1])															
1	0	0	0	16 bit Dorollol	16 bit Parallal		16 bit Parallol	1	1	1	Write 16-bit display data or 8-bit parameter (D[17:10], D[8:1])												
Ľ	U	U	0	TO-DIL Fatallet	1	Î	1	Read 16-bit Display data (D[17:10], D[8:1])															
					1	Î	1	Read 8-bit parameter or status (D[8:1])															
			1	1		0	1	1	Write 8-bit command (D[17:10])														
1	0	0							1			0 1			0 bit Decelled		1	1	1	Write 8-bit display data or 8-bit parameter (D[17:10])			
· ·	U	U		o-bit Farallel	1	Ť	1	Read 8-bit Display data (D[17:10])															
					1	Î	1	Read 8-bit parameter or status (D[17:10])															
					0	1	1	Write 8-bit command (D[8:1])															
1	0	1	0	10 bit Docallal	1	1	1	Write 18-bit display data or 8-bit parameter (D[17:0], D[8:1])															
'	U		0	To-bit Faraller	1	Ť	1	Read 18-bit Display data (D[17:0])															
					1	1	1	Read 8-bit parameter or status (D[8:1])															
					0	1	1	Write 8-bit command (D[17:10])															
4	0	1	1	0 bit Decellel	1	1	1	Write 9-bit display data or 8-bit parameter (D[17:9])															
	U	1		9-DIL Parallel	1	Î	1	Read 9-bit Display data (D[17:9])															
					1	1	1	Read 8-bit parameter or status (D[17:10])															

Table 12 The function of 8080-II series parallel interface

5.1.1 Write cycle sequence

The write cycle means that the host writes information (command / data) to the display via the interface. Each write cycle (WRX high-low-high sequence) consists of 3 control signals (DCX, RDX, WRX) and data signals (DB[17:0]). DCX bit is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is low (='0') and vice versa it is data (='1').

The host starts to control DB[17:0] lines The display writes DB[17:0] lines The host stops to control DB[17:0] lines when there is a falling edge of the WRX when there is a rising edge of WRX there is a rising edge o

Figure 8 8080-Series WRX Protocol

Note: WRX is an unsynchronized signal (It can be stopped).

Figure 9 8080-Series Parallel Bus Protocol, Write to Register or Display RAM

5.1.2 Read cycle sequence

The read cycle (RDX high-low-high sequence) means that the host reads information from LCD driver via interface. The driver sends data (D[17:0]) to the host when there is a falling edge of RDX and the host reads data when there is a rising edge of RDX.

Figure 10 8080-series RDX protocol

Note: RDX is an unsynchronized signal (It can be stopped).

Figure 11 8080-series parallel bus protocol, read data from register or display RAM

6. Data Color Coding

6.1 8080-II Series 8-bit Parallel Interface

The 8080-II series 8-bit parallel interface of ST7789V2 can be used by setting IM[3:0]="1001b". Different display data formats are available for three Colors depth supported by listed below.

- 65k colors, RGB 5,6,5-bit input.
- 262k colors, RGB 6,6,6-bit input.

6.2 8-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3Ah="05h"

Note 1: The data order is as follows, MSB=D17, LSB=D10 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit 4, LSB=Bit 0 for Red and Blue data.

Note 2: 2-times transfer transmit 1 pixel data with the 16-bit color depth information. Note 3: '-' = Don't care – Can be set to '0' or '1'

6.3 8-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3Ah="06h"

Note 1: The data order is as follows, MSB=D17, LSB=D10 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue data. Note 2: 3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information. Note 3: '-' = Don't care – Can be set to '0' or '1'

6.4 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors

6.5 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors

7. AC Characteristics

7.1 8080 Series MCU Parallel Interface Characteristics: 18/16/9/8-bit Bus

Signal	Symbol	Parameter	Min	Мах	Unit	Description
DICX	TAST	Address setup time	0		ns	
DICA	T _{AHT}	Address hold time (Write/Read)	10		ns	-
	Тсни	Chip select "H" pulse width	0		ns	
	Tcs	Chip select setup time (Write)	15		ns	
COV	T _{RCS}	Chip select setup time (Read ID)	45		ns	
USA	TRCSFM	Chip select setup time (Read FM)	355		ns	-
	T _{CSF}	Chip select wait time (Write/Read)	10		ns	
	Тсѕн	Chip select hold time	10		ns	
	Twc	Write cycle	66		ns	
WRX	Twrh	Control pulse "H" duration	15		ns	
	Twrl	Control pulse "L" duration	15		ns	
	T _{RC}	Read cycle (ID)	160		ns	
RDX (ID)	T _{RDH}	Control pulse "H" duration (ID)	90		ns	When read ID data
		Control pulse "L" duration (ID)	45		ns	
DDV	TRCFM	Read cycle (FM)	450		ns	When med from
	TRDHFM	Control pulse "H" duration (FM)	90		ns	frame memory
((=1VI)	TRDLFM	Control pulse "L" duration (FM)	355		ns	name memory
D[17:0]	T _{DST}	Data setup time	10		ns	For CL=30pF

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=25 $\ensuremath{\mathbb{C}}$

Тонт	Data hold time	10		ns	
T _{RAT}	Read access time (ID)		40	ns	
TRATEM	Read access time (FM)		340	ns	
TODH	Output disable time	20	80	ns	

Table 4 80)80 Paralle	l Interface	Characteristics

Figure 2 Rising and Falling Timing for I/O Signal

Figure 3 Write-to-Read and Read-to-Write Timing

Note: The rising time and falling time (Tr, Tf) of input signal and fall time are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

7.2 Reset Timing

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=25 °C

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	-	us
RESX	трт	Poset cancel	-	5 (Note 1, 5)	ms
	INI	Reset cancer		120 (Note 1, 6, 7)	ms

Table 9 Reset Timing

Notes:

1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.

4. Spike Rejection also applies during a valid reset pulse as shown below:

5. When Reset applied during Sleep In Mode.

6. When Reset applied during Sleep Out Mode.

 It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

8. Power Level Definition

8.1 Power Level

6 level modes are defined they are in order of Maximum Power consumption to Minimum Power Consumption

- 1. Normal Mode On (full display), Idle Mode Off, Sleep Out. In this mode, the display is able to show maximum 262,144 colors.
- 2. Partial Mode On, Idle Mode Off, Sleep Out.In this mode part of the display is used with maximum 262,144 colors.
- 3. Normal Mode On (full display), Idle Mode On, Sleep Out. In this mode, the full display area is used but with 8 colors.
- 4. Partial Mode On, Idle Mode On, Sleep Out.In this mode, part of the display is used but with 8 colors.
- 5. Sleep In Mode

In this mode, the DC: DC converter, internal oscillator and panel driver circuit are stopped. Only the MCU interface and memory works with VDDI power supply. Contents of the memory are safe.

Note: Transition between modes 1-5 is controllable by MCU commands. Mode 6 is entered only when both Power supplies are removed.

8.2 Power Flow Chart

9. Command Table

9.1 System Function Command Table 1

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
NOP	0	t	1	-	0	0	0	0	0	0	0	0	(00h)	No operation
SWRESET	0	t	1	-	0	0	0	0	0	O	0	1	(01h)	Software reset
	0	t	1	-	0	0	0	0	0	1	0	0	(04h)	Read display ID
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
RDDID	1	1	t	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		ID1 read
	1	1	t	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		ID2 read
	1	1	1	-	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		ID3 read
	0	t	1	-	0	o	0	o	1	o	0	1	(09h)	Read display
														status
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
RDDST	1	1	1	-	BSTON	MY	MX	MV	ML	RGB	мн	ST24		-
	1	1	1	-	ST23	IFPF2	IFPF1	IFPF0	IDMON	PTLON	SLOUT	NORON		-
	1	1	1	-	ST15	ST14	INVON	ST12	ST11	DISON	TEON	GCS2		-
	1	1	1	-	GCS1	GCS0	TEM	ST4	ST3	ST2	ST1	STO		-
	o	t	1	-	o	o	o	o	1	o	1	o	(0Ah)	Read display
RDDPM														power
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	BSTON	IDMON	PTLON	SLPOUT	NORON	DISON	0	0		
RDD	0	1	1	-	0	0	0	0	1	0	1	1	(0Bh)	Read display
MADCTL	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	MY	MX	MV	ML	RGB	мн	0	0		-
	o	t	1	-	0	o	o	o	1	1	0	o	(0Ch)	Read display
RDD	1	1	•											Dummumad
COLMOD	1	1	1	-	-	-	-	-	-	-	-	-		Duniny read
				-			0.5			02				Poor display
	0	t	1	-	0	O	O	O	1	1	0	1	(0Dh)	image
RDDIM	1	1	t		-	-	-	-	-	-	-	-		Dummy read
	1	1	+		VSSON	0	INVON	0	0	602	GC1	GC0		-
														Read display
RDDSM	0	t	1	-	0	0	0	0	1	1	1	0	(0Eh)	signal
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	t	-	TEON	TEM	0	0	0	0	0	0		-
														Read display
	0	t	1	-	0	0	0	0	1	1	1	1	(0Fh)	self-diagnostic
RDDSDR														result
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	D7	D6	0	0	0	0	0	0		-
SLPIN	0	t	1	-	0	0	0	1	0	0	0	0	(10h)	Sleep in
SLPOUT	0	t	1	-	0	0	0	1	0	0	0	1	(11h)	Sleep out
PTLON	0	t	1	-	0	0	0	1	0	0	1	0	(12h)	Partial mode on
NORON			1		0	0		1			1	1	(12b)	Partial off
NORON	U	Т		-	0	0			Ů	U			(Ion)	(Normal)
INVOEE					0	0							(20%)	Display inversion
INVOFF	U	Т		-	0	0		U	Ů	U	Ů	0	(201)	off
INVON			1		0	0	1	0		0		1	(216)	Display inversion
INVON	Ŭ	T		-		v		U U	Ů	Ů	Ů		(2111)	on
GAMSET	0	t	1	-	0	0	1	0	0	0	0	1	(26h)	Display inversion
GAMBET	1	t	1	-	0	0	0	0	GC3	GC2	GC1	GC0		on
DISPOFF	0	t	1	-	0	0	1	0	1	0	0	0	(28h)	Display off
DISPON	0	t	1	-	0	0	1	0	1	0	0	1	(29h)	Display on
													(246)	Column address
		Т		-		0		U		Ů		0	(281)	set
CASET	1	t	1	-	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8		X address start:
CASET	1	t	1		XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0		0≤XS≤X
	1	t	1		XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8		X address start:
	1	t	1		XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0		S≦XE≦X
	0	t	1	-	0	0	1	0	1	0	1	1	(2Bh)	Row address set
	1	t	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8		Y address start:
RASET	1	t	1		YS7	YS6	YS5	YS4	YS3	YS2	YS1	YSO		0≤YS≤Y
	1	t	1		YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8		Y address start:
	1	t	1		YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0		S≦YE≦Y
	0	t	1	-	0	0	1	0	1	1	0	0	(2Ch)	Memory write
	1	t	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
RAMWR	1	t	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	t	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
RAMRD	0	t	1	-	0	0	1	0	1	1	1	0	(2Eh)	Memory read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	DO	Hex	Function
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	t	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Read data
	1	1	t	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
			1		0	0					0	0	(206)	Partial sart/end
		1			•	v				Ů		Ŭ	(SUN)	address set
	1	t	1	-	PSL15	PSL14	PSL13	PSL12	PSL11	PSL10	PSL9	PSL8		Partial start
PTLAR	1	•	1		PSI 7	PSI 6	PSL5	PSI 4	PSI 3	PSI 2	PSI 1	PSL0		address: (0,
1124					102/			1021	1 020	1022		1020		1,2,P)
	1	t	1	-	PEL15	PEL14	PEL13	PEL12	PEL11	PEL10	PEL9	PEL8		Partial end
	1	•	1		PEL7	PEL6	PEL5	PEL4	PEL3	PEL2	PEL1	PELO		address (0, 1,2,
		÷.							1 220					3, , P)
	0		1		0	0	1	1	0	0	1	1	(33h)	Vertical scrolling
		<u> </u>			,				Ŭ				(0011)	definition
	1	t	1	-	TFA15	TFA14	TFA13	TFA12	TFA11	TFA10	TFA9	TFA8		
VSCRDEE	1	t	1	-	TFA7	TFA6	TFA5	TFA4	TFA3	TFA2	TFA1	TFA0		
VSGNDEI	1	t	1	-	VSA15	VSA14	VSA13	VSA12	VSA11	VSA10	VSA9	VSA8		
	1	t	1	-	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0		
	1	t	1	-	BFA15	BFA14	BFA13	BFA12	BFA11	BFA10	BFA9	BFA8		
	1	t	1	-	BFA7	BFA6	BFA5	BFA4	BFA3	BFA2	BFA1	BFA0		
TEOFE													(246)	Tearing effect
TEOPP	U	Т			•	0			U		0	0	(34n)	line off
TEON					0	0							(255)	Tearing effect
TEON		1		-	•	0			Ů		0		(Son)	line on
	1	t	1	-	-	-	-	-	-	-	-	TEM		
	0		1		0	0	1			1	1	0	(285)	Memory data
MADCTL		1			,				Ŭ			, i	(3011)	access control
	1	t	1	-	MY	MX	MV	ML	RGB	0	0	0		-
													(275)	Vertical scrolling
VICODOADD		1		-	•	0			Ů				(arn)	start address
VSCRSADD	1	t	1	-	VSP15	VSP14	VSP13	VSP12	VSP11	VSP10	VSP9	VSP8		
	1	t	1	-	VSP7	VSP6	VSP5	VSP4	VSP3	VSP2	VSP1	VSPO		
IDMOFF	0	t	1	-	0	0	1	1	1	0	0	0	(38h)	Idle mode off
IDMON	0	Ť	1	-	0	0	1	1	1	0	0	1	(39h)	Idle mode on

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	DO	Hex	Function
COLMOD	0	t	1	-	0	0	1	1	1	0	1	0	(3Ah)	Interface pixel format
	1	t	1	-	0	D6	D5	D4	0	D2	D1	D0		Interface format
	0	t	1	-	0	0	1	1	1	1	0	0	(3Ch)	Memory write continue
RAMWRC	1	t	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	t	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	t	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	t	1	-	0	0	1	1	1	1	1	0	(3Eh)	Memory read
RAMPOC	1	1	t	-	-	-	-	-	-	-	-	-		Dummy Read
RAMRDC	1	1	t	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	t	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		
	1	1	t	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	t	1	-	0	1	0	0	0	1	0	0	(44h)	Set tear scanline
TESCAN	1	t	1	-	N15	N14	N13	N12	N11	N10	N9	N8		
	1	t	1	-	N7	N6	N5	N4	N3	N2	N1	NO		
	0	t	1	-	0	1	0	0	0	1	0	1	(45h)	Get scanline
PDTECOM	1	1	t	-	-	-	-	-	-	-	-	-		Dummy Read
RDTESCAN	1	1	t	-	-	-	-	-	-	-	N9	N8		
	1	1	t	-	N7	N6	N5	N4	N3	N2	N1	NO		
	0	t	1	-	0	1	0	1	0	0	0	1	(51h)	Write display
WRDISBV	1	t	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		brightness
0001001/	0	t	1	-	0	1	0	1	0	0	1	0	(52h)	Read display brightness value
RUDISBV	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		
WRCTRLD	0	t	1	-	0	1	0	1	0	0	1	1	(53h)	Write CTRL display
	1	t	1	-	0	0	BCTRL	0	DD	BL	0	0		
RDCTRLD	0	t	1	-	0	1	0	1	0	1	0	0	(54h)	Read CTRL value dsiplay
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	0	0	BCTRL	0	DD	BL	0	0		

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
WRCACE	0	t	1	-	0	1	0	1	0	1	0	1	(55h)	Write content adaptive brightness control and Color enhancemnet
	1	1	1	-	CECTRL	0	CE1	CE0	0	0	C1	CO		
RDCABC	O	t	1	-	O	1	0	1	0	1	1	0	(56h)	Read content adaptive brightness control
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	0	CECTRL	0	0	0	0	C1	CO		
WRCABCMB	0	t	1	-	0	1	0	1	1	1	1	0	(5Eh)	Write CABC minimum brightness
	1	t	1	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
RDCABCMB	0	t	1	-	0	1	0	1	1	1	1	1	(5Fh)	Read CABC minimum brightness
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
RDABCSDR	0	t	1	-	0	1	1	0	1	0	0	0	(68h)	Read Automatic Brightness Control Self-Diagnostic Result
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	D7	D6	0	0	0	0	0	0		-
	0	1	1	-	1	1	0	1	1	0	1	0	(Dah)	Read ID1
RDID1	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		Read parameter
	0	1	1	-	1	1	0	1	1	0	1	1	(DBh)	Read ID2
RDID2	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		Read parameter
RDID3	0	1	1	-	1	1	0	1	1	1	0	0	(DCh)	Read ID3

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	t	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	t		ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		Read parameter

Table 19 System Function Command List

"-": Don't care

10. RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) total 5 cycle	1,2
Storage Humidity Test	60 °C, Humidity 90%, 96 hrs	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note 1 : Condensation of water is not permitted on the module.

- Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).
- Note 3 : The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note 4 : All the reliability tests should be done without protective film on the module.

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

11. USE PRECAUTIONS

11-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

11-2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

11-3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.
- 11-4 Operating precautions
- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.

- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.
- 11-5 Other
- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 3) AMIPRE will provide one years warrantee for all products and three months warrantee for all repairing products.

12. MECHANICAL DRAWING

